Title 40

PART 58 APPENDIX D



Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

40:6.0.1.1.6.9.1.1.37 : Appendix D

Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring 1. Monitoring Objectives and Spatial Scales 2. General Monitoring Requirements 3. Design Criteria for NCore Sites 4. Pollutant-Specific Design Criteria for SLAMS Sites 5. Design Criteria for Photochemical Assessment Monitoring Stations (PAMS) 6. References 1. Monitoring Objectives and Spatial Scales

The purpose of this appendix is to describe monitoring objectives and general criteria to be applied in establishing the required SLAMS ambient air quality monitoring stations and for choosing general locations for additional monitoring sites. This appendix also describes specific requirements for the number and location of FRM, FEM, and ARM sites for specific pollutants, NCore multipollutant sites, PM 10 mass sites, PM 2.5 mass sites, chemically-speciated PM 2.5 sites, and O3 precursor measurements sites (PAMS). These criteria will be used by EPA in evaluating the adequacy of the air pollutant monitoring networks.

1.1 Monitoring Objectives. The ambient air monitoring networks must be designed to meet three basic monitoring objectives. These basic objectives are listed below. The appearance of any one objective in the order of this list is not based upon a prioritized scheme. Each objective is important and must be considered individually.

(a) Provide air pollution data to the general public in a timely manner. Data can be presented to the public in a number of attractive ways including through air quality maps, newspapers, Internet sites, and as part of weather forecasts and public advisories.

(b) Support compliance with ambient air quality standards and emissions strategy development. Data from FRM, FEM, and ARM monitors for NAAQS pollutants will be used for comparing an area's air pollution levels against the NAAQS. Data from monitors of various types can be used in the development of attainment and maintenance plans. SLAMS, and especially NCore station data, will be used to evaluate the regional air quality models used in developing emission strategies, and to track trends in air pollution abatement control measures' impact on improving air quality. In monitoring locations near major air pollution sources, source-oriented monitoring data can provide insight into how well industrial sources are controlling their pollutant emissions.

(c) Support for air pollution research studies. Air pollution data from the NCore network can be used to supplement data collected by researchers working on health effects assessments and atmospheric processes, or for monitoring methods development work.

1.1.1 In order to support the air quality management work indicated in the three basic air monitoring objectives, a network must be designed with a variety of types of monitoring sites. Monitoring sites must be capable of informing managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, and air pollution levels near specific sources. To summarize some of these sites, here is a listing of six general site types:

(a) Sites located to determine the highest concentrations expected to occur in the area covered by the network.

(b) Sites located to measure typical concentrations in areas of high population density.

(c) Sites located to determine the impact of significant sources or source categories on air quality.

(d) Sites located to determine general background concentration levels.

(e) Sites located to determine the extent of regional pollutant transport among populated areas; and in support of secondary standards.

(f) Sites located to measure air pollution impacts on visibility, vegetation damage, or other welfare-based impacts.

1.1.2 This appendix contains criteria for the basic air monitoring requirements. The total number of monitoring sites that will serve the variety of data needs will be substantially higher than these minimum requirements provide. The optimum size of a particular network involves trade-offs among data needs and available resources. This regulation intends to provide for national air monitoring needs, and to lend support for the flexibility necessary to meet data collection needs of area air quality managers. The EPA, State, and local agencies will periodically collaborate on network design issues through the network assessment process outlined in § 58.10.

1.1.3 This appendix focuses on the relationship between monitoring objectives, site types, and the geographic location of monitoring sites. Included are a rationale and set of general criteria for identifying candidate site locations in terms of physical characteristics which most closely match a specific monitoring objective. The criteria for more specifically locating the monitoring site, including spacing from roadways and vertical and horizontal probe and path placement, are described in appendix E to this part.

1.2 Spatial Scales. (a) To clarify the nature of the link between general monitoring objectives, site types, and the physical location of a particular monitor, the concept of spatial scale of representativeness is defined. The goal in locating monitors is to correctly match the spatial scale represented by the sample of monitored air with the spatial scale most appropriate for the monitoring site type, air pollutant to be measured, and the monitoring objective.

(b) Thus, spatial scale of representativeness is described in terms of the physical dimensions of the air parcel nearest to a monitoring site throughout which actual pollutant concentrations are reasonably similar. The scales of representativeness of most interest for the monitoring site types described above are as follows:

(1) Microscale - Defines the concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.

(2) Middle scale - Defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.

(3) Neighborhood scale - Defines concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range. The neighborhood and urban scales listed below have the potential to overlap in applications that concern secondarily formed or homogeneously distributed air pollutants.

(4) Urban scale - Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in there being no single site that can be said to represent air quality on an urban scale.

(5) Regional scale - Defines usually a rural area of reasonably homogeneous geography without large sources, and extends from tens to hundreds of kilometers.

(6) National and global scales - These measurement scales represent concentrations characterizing the nation and the globe as a whole.

(c) Proper siting of a monitor requires specification of the monitoring objective, the types of sites necessary to meet the objective, and then the desired spatial scale of representativeness. For example, consider the case where the objective is to determine NAAQS compliance by understanding the maximum ozone concentrations for an area. Such areas would most likely be located downwind of a metropolitan area, quite likely in a suburban residential area where children and other susceptible individuals are likely to be outdoors. Sites located in these areas are most likely to represent an urban scale of measurement. In this example, physical location was determined by considering ozone precursor emission patterns, public activity, and meteorological characteristics affecting ozone formation and dispersion. Thus, spatial scale of representativeness was not used in the selection process but was a result of site location.

(d) In some cases, the physical location of a site is determined from joint consideration of both the basic monitoring objective and the type of monitoring site desired, or required by this appendix. For example, to determine PM 2.5 concentrations which are typical over a geographic area having relatively high PM 2.5 concentrations, a neighborhood scale site is more appropriate. Such a site would likely be located in a residential or commercial area having a high overall PM 2.5 emission density but not in the immediate vicinity of any single dominant source. Note that in this example, the desired scale of representativeness was an important factor in determining the physical location of the monitoring site.

(e) In either case, classification of the monitor by its type and spatial scale of representativeness is necessary and will aid in interpretation of the monitoring data for a particular monitoring objective (e.g., public reporting, NAAQS compliance, or research support).

(f) Table D-1 of this appendix illustrates the relationship between the various site types that can be used to support the three basic monitoring objectives, and the scales of representativeness that are generally most appropriate for that type of site.

Table D-1 of Appendix D to Part 58 - Relationship Between Site Types and Scales of Representativeness

Site type Appropriate siting scales
1. Highest concentration Micro, middle, neighborhood (sometimes urban or regional for secondarily formed pollutants).
2. Population oriented Neighborhood, urban.
3. Source impact Micro, middle, neighborhood.
4. General/background & regional transport Urban, regional.
5. Welfare-related impacts Urban, regional.