Title 10
PART 430 APPENDIX Q
Ballast type | Lamp type | Frequency
adjustment factor (β) |
||
---|---|---|---|---|
Lamp diameter and base | Nominal lamp wattage |
Low- frequency |
High- frequency |
|
Ballasts that operate straight-shaped lamps (commonly referred to as 4-foot medium bipin lamps) with medium bipin bases and a nominal overall length of 48 inches | T8 MBP (Data Sheet
7881-ANSI-1005-4) * T12 MBP (Data Sheet 7881-ANSI-1006-1) * |
32 34 |
0.94 0.93 |
1.0 1.0 |
Ballasts that operate U-shaped lamps (commonly referred to as 2-foot U-shaped lamps) with medium bipin bases and a nominal overall length between 22 and 25 inches | T8 MBP (Data Sheet
78901-ANSI-4027-2) * T12 MBP ** |
32 34 |
0.94 0.93 |
1.0 1.0 |
Ballasts that operate lamps (commonly referred to as 8-foot-high output lamps) with recessed double contact bases and a nominal overall length of 96 inches | T8 HO RDC (Data Sheet
7881-ANSI-1501-2) * T12 HO RDC (Data Sheet 7881-ANSI-1017-1) * |
86 95 |
0.92 0.94 |
1.0 1.0 |
Ballasts that operate lamps (commonly referred to as 8-foot slimline lamps) with single pin bases and a nominal overall length of 96 inches | T8 slimline SP (Data Sheet
7881-ANSI-1505-1) * T12 slimline SP (Data Sheet 7881-ANSI-3006-1) * |
59 60 |
0.95 0.94 |
1.0 1.0 |
Ballasts that operate straight-shaped lamps (commonly referred to as 4-foot miniature bipin standard output lamps) with miniature bipin bases and a nominal length between 45 and 48 inches | T5 SO Mini-BP (Data Sheet 60081-IEC-6640-7) * | 28 | 0.95 | 1.0 |
Ballasts that operate straight-shaped lamps (commonly referred to as 4-foot miniature bipin high output lamps) with miniature bipin bases and a nominal length between 45 and 48 inches | T5 HO Mini-BP (Data Sheet 60081-IEC-6840-6) * | 54 | 0.95 | 1.0 |
Sign ballasts that operate lamps (commonly referred to as 8-foot high output lamps) with recessed double contact bases and a nominal overall length of 96 inches | T8 HO RDC (Data Sheet
7881-ANSI-1501-2) * T12 HO RDC (Data Sheet 7881-ANSI-1019-1) * |
86 † 110 |
0.92 0.94 |
1.0 1.0 |
MBP, Mini-BP, RDC, and SP represent medium bipin, miniature bipin, recessed double contact, and single pin, respectively.
* Data Sheet corresponds to ANSI C78.81-2016, ANSI C78.901-2016, or IEC 60081 page number (incorporated by reference; see § 430.3).
** No ANSI or IEC Data Sheet exists for 34 W T12 MBP U-shaped lamps. For ballasts designed and marketed to operate only T12 2-foot U-shaped lamps with MBP bases and a nominal overall length between 22 and 25 inches, select T12 U-shaped lamps designed and marketed as having a nominal wattage of 34 W.
† This lamp type is commonly marketed as 110 W; however, the ANSI C78.81-2016 Data Sheet (incorporated by reference; see § 430.3) lists nominal wattage of 113 W. Test with specifications for operation at 0.800 amperes (A).
2.3.4.1. The power analyzer test setup must have exactly n + 1 channels, where n is the maximum number of lamps (lamp type as determined by sections 2.3.3.2, 2.3.3.3, and 2.3.3.4 of this appendix) a ballast is designed and marketed to operate. Use the minimum number of power analyzers possible during testing. Synchronize all power analyzers. A system may be used to synchronize the power analyzers.
2.3.4.2. Lamp Arc Voltage. Attach leads from the power analyzer to each fluorescent lamp according to Figure 1 of this section for rapid- and programmed-start ballasts; Figure 2 of this section for instant-start ballasts operating single pin (SP) lamps; and Figure 3 of this section for instant-start ballasts operating medium bipin (MBP), miniature bipin (mini-BP), or recessed double contact (RDC) lamps. The programmed- and rapid-start ballast test setup includes two 1000 ohm resistors placed in parallel with the lamp pins to create a midpoint from which to measure lamp arc voltage.
2.3.4.3. Lamp Arc Current. Position a current probe on each fluorescent lamp according to Figure 1 of this section for rapid- and programmed-start ballasts; Figure 2 of this section for instant-start ballasts operating SP lamps; and Figure 3 of this section for instant-start ballasts operating MBP, mini-BP, and RDC lamps.
For the lamp arc current measurement, set the full transducer ratio in the power analyzer to match the current probe to the power analyzer.
Where: Iin is the current through the current transducer, Vout is the voltage out of the transducer, Rin is the power analyzer impedance, and Rs is the current probe output impedance. 2.4. Test Conditions2.4.1. Establish and maintain test conditions for testing fluorescent lamp ballasts in accordance with sections 3 and 4 of ANSI C82.2.
2.4.2. Room Temperature and Air Circulation. Maintain the test area at 25 ±1 °C, with minimal air movement as defined in section 4 of ANSI C78.375A.
2.4.3. Input Voltage. For any ballast designed and marketed for operation at only one input voltage, test at that specified voltage. For any ballast that is neither a residential ballast nor a sign ballast but is designed and marketed for operation at multiple voltages, test the ballast at 277 V ±0.1%. For any residential ballast or sign ballast designed and marketed for operation at multiple voltages, test the ballast at 120 V ±0.1%.
2.5. Test Method2.5.1. Connect the ballast to the selected fluorescent lamps (as determined in section 2.3.3 of this appendix) and to measurement instrumentation as specified in the Test Setup in section 2.3 of this appendix.
2.5.2. Determine stable operating conditions according to Option 1 or Option 2.
2.5.2.1. Option 1. Operate the ballast for at least 15 minutes before determining stable operating conditions. Determine stable operating conditions by measuring lamp arc voltage, current, and power once per minute in accordance with the setup described in section 2.3 of this appendix. The system is stable once the difference between the maximum and minimum for each value of lamp arc voltage, current, and power divided by the average value of the measurements do not exceed one percent over a four minute moving window. Once stable operating conditions are reached, measure each of the parameters described in sections 2.5.3 through 2.5.9 of this appendix.
2.5.2.2 Option 2. Determine stable operating conditions for lamp arc voltage, current, and power according to steps 1 through 6 of section D.2.1 in Annex D of ANSI C82.11.
2.5.3. Lamp Arc Voltage. Measure lamp arc voltage in volts (RMS) using the setup in section 2.3.4.2.
2.5.4. Lamp Arc Current. Measure lamp arc current in amps (RMS) using the setup in section 2.3.4.3 of this appendix.
2.5.5. Lamp Arc Power. The power analyzer must calculate output power by using the measurements from sections 2.5.3 and 2.5.4 of this appendix.
2.5.6. Input Power. Measure the input power in watts to the ballast in accordance with section 7 of ANSI C82.2 (disregard references to Figure 1 and Figure 3).
2.5.7. Input Voltage. Measure the input voltage in volts (RMS) to the ballast in accordance with section 7 of ANSI C82.2 (disregard references to Figure 1 and Figure 3).
2.5.8. Input Current. Measure the input current in amps (RMS) to the ballast in accordance with section 7 of ANSI C82.2 (disregard references to Figure 1 and Figure 3).
2.5.9. Lamp Operating Frequency. Measure the frequency of the waveform delivered from the ballast to any lamp used in the test in accordance with the setup in section 2.3 of this appendix.
2.6. Calculations2.6.1. Calculate ballast luminous efficiency (BLE) as follows (do not round values of total lamp arc power and input power prior to calculation):
Where: Total Lamp Arc Power is the sum of the lamp arc powers for all lamps operated by the ballast as measured in section 2.5.5 of this appendix, Input Power is as determined by section 2.5.6 of this appendix, and β is equal to the frequency adjustment factor in Table 1 of this appendix.2.6.2. Calculate Power Factor (PF) as follows (do not round values of input power, input voltage, and input current prior to calculation):
Where: Input Power is measured in accordance with section 2.5.6 of this appendix, Input Voltage is measured in accordance with section 2.5.7 of this appendix, and Input Current is measured in accordance with section 2.5.8 of this appendix. 3. Standby Mode Procedure3.1. The measurement of standby mode power is required to be performed only if a manufacturer makes any representations with respect to the standby mode power use of the fluorescent lamp ballast. When there is a conflict, the language of the test procedure in this appendix takes precedence over IEC 62301 (incorporated by reference; see § 430.3). Specifications in referenced standards that are not clearly mandatory are mandatory. Manufacturer's instructions, such as “instructions for use” referenced in IEC 62301 mean the manufacturer's instructions that come packaged with or appear on the unit, including on a label. It may include an online manual if specifically referenced (e.g., by date or version number) either on a label or in the packaged instructions. Instructions that appear on the unit take precedence over instructions available electronically, such as through the internet.
3.2. Test Setup3.2.1. Take all measurements with instruments as specified in section 2.2 of this appendix. Fluorescent lamp ballasts that are designed and marketed for connection to control devices must be tested with all commercially available compatible control devices connected in all possible configurations. For each configuration, a separate measurement of standby power must be made in accordance with section 3.4 of this appendix.
3.2.2. Connect each ballast to the maximum number of lamp(s) as specified in section 2.3 (specifications in 2.3.3.1 are optional) of this appendix. Note: ballast operation with reference lamp(s) is not required.
3.3. Test Conditions3.3.1. Establish and maintain test conditions in accordance with section 2.4 of this appendix.
3.4. Test Method and Measurements3.4.1. Turn on all of the lamps at full light output.
3.4.2. Send a signal to the ballast instructing it to have zero light output using the appropriate ballast communication protocol or system for the ballast being tested.
3.4.3. Stabilize the ballast prior to measurement using one of the methods as specified in section 5 of IEC 62301.
3.4.4. Measure the standby mode energy consumption in watts using one of the methods as specified in section 5 of IEC 62301.
[85 FR 56494, Sept. 14, 2020]