Title 10

PART 430 APPENDIX CC



Appendix CC to Subpart B of Part 430 - Uniform Test Method for Measuring the Energy Consumption of Portable Air Conditioners

10:3.0.1.4.18.3.13.6.41 : Appendix CC

Appendix CC to Subpart B of Part 430 - Uniform Test Method for Measuring the Energy Consumption of Portable Air Conditioners 1. Scope

This appendix covers the test requirements used to measure the energy performance of single-duct and dual-duct portable air conditioners, as defined at 10 CFR 430.2.

2. Definitions

2.1 ANSI/AHAM PAC-1-2015 means the test standard published by the Association of Home Appliance Manufacturers, titled “Portable Air Conditioners,” ANSI/AHAM PAC-1-2015 (incorporated by reference; see § 430.3).

2.2 ASHRAE Standard 37-2009 means the test standard published by the American National Standards Institute and American Society of Heating, Refrigerating and Air-Conditioning Engineers and, titled “Methods of Testing for Rating Electrically Driven Unitary Air-Conditioning and Heat Pump Equipment,” ASHRAE Standard 37-2009 (incorporated by reference; see § 430.3).

2.3 Combined energy efficiency ratio is the energy efficiency of a portable air conditioner as measured in accordance with this test procedure in Btu per watt-hours (Btu/Wh) and determined in section 5.4.

2.4 Cooling mode means a mode in which a portable air conditioner has activated the main cooling function according to the thermostat or temperature sensor signal, including activating the refrigeration system, or activating the fan or blower without activation of the refrigeration system.

2.5 IEC 62301 means the test standard published by the International Electrotechnical Commission, titled “Household electrical appliances-Measurement of standby power,” Publication 62301 (Edition 2.0 2011-01) (incorporated by reference; see § 430.3).

2.6 Inactive mode means a standby mode that facilitates the activation of an active mode or off-cycle mode by remote switch (including remote control), internal sensor, or timer, or that provides continuous status display.

2.7 Off-cycle mode means a mode in which a portable air conditioner:

(1) Has cycled off its main cooling or heating function by thermostat or temperature sensor signal;

(2) May or may not operate its fan or blower; and

(3) Will reactivate the main function according to the thermostat or temperature sensor signal.

2.8 Off mode means a mode in which a portable air conditioner is connected to a mains power source and is not providing any active mode, off-cycle mode, or standby mode function, and where the mode may persist for an indefinite time. An indicator that only shows the user that the portable air conditioner is in the off position is included within the classification of an off mode.

2.9 Seasonally adjusted cooling capacity means the amount of cooling, measured in Btu/h, provided to the indoor conditioned space, measured under the specified ambient conditions.

2.10 Standby mode means any mode where a portable air conditioner is connected to a mains power source and offers one or more of the following user-oriented or protective functions which may persist for an indefinite time:

(1) To facilitate the activation of other modes (including activation or deactivation of cooling mode) by remote switch (including remote control), internal sensor, or timer; or

(2) Continuous functions, including information or status displays (including clocks) or sensor-based functions. A timer is a continuous clock function (which may or may not be associated with a display) that provides regular scheduled tasks (e.g., switching) and that operates on a continuous basis.

3. Test Apparatus and General Instructions

3.1 Active mode.

3.1.1 Test conduct. The test apparatus and instructions for testing portable air conditioners in cooling mode and off-cycle mode must conform to the requirements specified in Section 4, “Definitions” and Section 7, “Tests,” of ANSI/AHAM PAC-1-2015 (incorporated by reference; see § 430.3), except as otherwise specified in this appendix. Where applicable, measure duct heat transfer and infiltration air heat transfer according to section 4.1.1.1 and section 4.1.1.2 of this appendix, respectively. Note that if a product is able to operate as both a single-duct and dual-duct portable AC as distributed in commerce by the manufacturer, it must be tested and rated for both duct configurations.

3.1.1.1 Duct setup. Use ducting components provided by the manufacturer, including, where provided by the manufacturer, ducts, connectors for attaching the duct(s) to the test unit, sealing, insulation, and window mounting fixtures. Do not apply additional sealing or insulation.

3.1.1.2 Single-duct evaporator inlet test conditions. When testing single-duct portable air conditioners, maintain the evaporator inlet dry-bulb temperature within a range of 1.0 °F with an average difference within 0.3 °F.

3.1.1.3 Condensate Removal. Set up the test unit in accordance with manufacturer instructions. If the unit has an auto-evaporative feature, keep any provided drain plug installed as shipped and do not provide other means of condensate removal. If the internal condensate collection bucket fills during the test, halt the test, remove the drain plug, install a gravity drain line, and start the test from the beginning. If no auto-evaporative feature is available, remove the drain plug and install a gravity drain line. If no auto-evaporative feature or gravity drain is available and a condensate pump is included, or if the manufacturer specifies the use of an included condensate pump during cooling mode operation, then test the portable air conditioner with the condensate pump enabled. For units tested with a condensate pump, apply the provisions in Section 7.1.2 of ANSI/AHAM PAC-1-2015 (incorporated by reference; see § 430.3) if the pump cycles on and off.

3.1.1.4 Unit Placement. There shall be no less than 3 feet between any test chamber wall surface and any surface on the portable air conditioner, except the surface or surfaces of the portable air conditioner that include a duct attachment. The distance between the test chamber wall and a surface with one or more duct attachments is prescribed by the test setup requirements in Section 7.3.7 of ANSI/AHAM PAC-1-2015 (incorporated by reference; see § 430.3).

3.1.1.5 Electrical supply. Maintain the input standard voltage at 115 V ±1 percent. Test at the rated frequency, maintained within ±1 percent.

3.1.1.6 Duct temperature measurements. Install any insulation and sealing provided by the manufacturer. Then adhere four equally spaced thermocouples per duct to the outer surface of the entire length of the duct. Measure the surface temperatures of each duct. Temperature measurements must have an error no greater than ±0.5 °F over the range being measured.

3.1.2 Control settings. Set the controls to the lowest available temperature setpoint for cooling mode. If the portable air conditioner has a user-adjustable fan speed, select the maximum fan speed setting. If the portable air conditioner has an automatic louver oscillation feature, disable that feature throughout testing. If the louver oscillation feature is included but there is no option to disable it, test with the louver oscillation enabled. If the portable air conditioner has adjustable louvers, position the louvers parallel with the air flow to maximize air flow and minimize static pressure loss.

3.1.3 Measurement resolution. Record measurements at the resolution of the test instrumentation.

3.2 Standby mode and off mode.

3.2.1 Installation requirements. For the standby mode and off mode testing, install the portable air conditioner in accordance with Section 5, Paragraph 5.2 of IEC 62301 (incorporated by reference; see § 430.3), disregarding the provisions regarding batteries and the determination, classification, and testing of relevant modes.

3.2.2 Electrical energy supply.

3.2.2.1 Electrical supply. For the standby mode and off mode testing, maintain the input standard voltage at 115 V ±1 percent. Maintain the electrical supply at the rated frequency ±1 percent.

3.2.2.2 Supply voltage waveform. For the standby mode and off mode testing, maintain the electrical supply voltage waveform indicated in Section 4, Paragraph 4.3.2 of IEC 62301 (incorporated by reference; see § 430.3).

3.2.3 Standby mode and off mode wattmeter. The wattmeter used to measure standby mode and off mode power consumption must meet the requirements specified in Section 4, Paragraph 4.4 of IEC 62301 (incorporated by reference; see § 430.3).

3.2.4 Standby mode and off mode ambient temperature. For standby mode and off mode testing, maintain room ambient air temperature conditions as specified in Section 4, Paragraph 4.2 of IEC 62301 (incorporated by reference; see § 430.3).

4. Test Measurement

4.1 Cooling mode. Measure the indoor room cooling capacity and overall power input in cooling mode in accordance with Section 7.1.b and 7.1.c of ANSI/AHAM PAC-1-2015 (incorporated by reference; see § 430.3), respectively. Determine the test duration in accordance with Section 8.7 of ASHRAE Standard 37-2009 (incorporated by reference; § 430.3). Apply the test conditions for single-duct and dual-duct portable air conditioners presented in Table 1 of this appendix instead of the test conditions in Table 3 of ANSI/AHAM PAC-1-2015. For single-duct units, measure the indoor room cooling capacity, CapacitySD, and overall power input in cooling mode, PSD, in accordance with the ambient conditions for test configuration 5, presented in Table 1 of this appendix. For dual-duct units, measure the indoor room cooling capacity and overall power input in accordance with ambient conditions for test configuration 3, condition A (Capacity95, P95), and then measure the indoor room cooling capacity and overall power input a second time in accordance with the ambient conditions for test configuration 3, condition B (Capacity83, P83), presented in Table 1 of this appendix. Note that for the purposes of this cooling mode test procedure, evaporator inlet air is considered the “indoor air” of the conditioned space and condenser inlet air is considered the “outdoor air” outside of the conditioned space.

Table 1 - Evaporator (Indoor) and Condenser (Outdoor) Inlet Test Conditions

Test configuration Evaporator inlet air,
°F
( °C)
Condenser inlet air,
°F
( °C)
Dry bulb Wet bulb Dry bulb Wet bulb
3 (Dual-Duct, Condition A) 80 (26.7) 67 (19.4) 95 (35.0) 75 (23.9)
3 (Dual-Duct, Condition B) 80 (26.7) 67 (19.4) 83 (28.3) 67.5 (19.7)
5 (Single-Duct) 80 (26.7) 67 (19.4) 80 (26.7) 67 (19.4)