(6) Wet on Rubber Residue in Touchdown Zone:

An SOC is required.

2.i. The simulator must simulate:
 (1) brake and tire failure dynamics, including antiskid failure; and
 (2) decreased brake efficiency due to high brake temperatures, if applicable.

An SOC is required

2.j. Engine and Airframe Icing
 Modeling that includes the effects of icing, where appropriate, on the airframe, aerodynamics, and the engine(s). Icing models must simulate the aerodynamic degradation effects of ice accretion on the airplane lifting surfaces including loss of lift, decrease in stall angle of attack, change in pitching moment, decrease in control effectiveness, and changes in control forces in addition to any overall increase in drag. Aircraft systems (such as the stall protection system and autoflight system) must respond properly to ice accretion consistent with the simulated aircraft.

 Aircraft OEM data or other acceptable analytical methods must be utilized to develop ice accretion models. Acceptable analytical methods may include wind tunnel analysis and/or engineering analysis of the aerodynamic effects of icing on the lifting surfaces coupled with tuning and supplemental subjective assessment by a subject matter expert pilot.

 SOC and tests required. See objective testing requirements (Attachment 2, test 2.i.).

 X X Simulator pitch, side loading, and directional control characteristics should be representative of the airplane.

X X SOC should be provided describing the effects which provide training in the specific skills required for recognition of icing phenomena and execution of recovery. The SOC should describe the source data and any analytical methods used to develop ice accretion models including verification that these effects have been tested.

 Icing effects simulation models are only required for those airplanes authorized for operations in icing conditions.

 See Attachment 7 of this Appendix for further guidance material.

X X See Attachment 2 of this